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Precollisional velocity correlations in a hard-disk fluid with dissipative collisions
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Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a
density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced
distributions, we predict the presence of precollisional velocity correlations. They are created by the propaga-
tion through correlated sequences of collisigrisg event$ of the velocity correlations generated after dissi-
pative collisions. The correlations have their origin in the dissipative character of collisions, being always
present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of
a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure
shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative
agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions
and molecular dynamics results that showed evidence of precollisional velocity corre(&ioBsto and M.
Mareschal, Phys. Rev. &3, 041303(2002)].
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|. INTRODUCTION 1 . .
V’1‘=V1—§(l+a71)(a'vlz)a', 3
Granular matter is characterized by energy dissipation at
collisions. If energy is continuously injected into granular
systems, they become fluidized. Granular fluids resemble . 1 g, -
elastic fluids, and kinetic and hydrodynamic descriptions V2 =Vot 5(1+a ) (oo
have been used in their description. In the theory of granular
fluids, the simplest model describing the effects of inelastic- . . . .
ity is the inelastic hard sphef#HS) fluid. Grains are repre- Th? present paper is concerned with dynamic correlations
sented by impenetrable hard spheres of diametand mass in qu|d_|zed granular matter, .rep_resented by thg .tWO'
m. The motion of the spheres between collisions is free. At éhmens[onal IHS model. Our quect is to study precollisional
binary encounter the velocities, v, of the colliding pair correlations at the microscopic length §cale, of the order of
suffer the instantaneous transformation the hard sphere diameter. This question has not yet been
sufficiently discussed. First studies of correlations, based on
1 fluctuating hydrodynamics and on the ring kinetic equation,
Vi—V, =V, — = (1+a)(0- Vi) o, (1)  were focused on the effects of inelasticity on the large dis-
2 tance structure of the fluiffl—3]. At weak inelasticities al-
gebraicr ~9 tails have been found in the spatial velocity cor-
1 . . relations, with an exponential cutoff at distanae®f the
Vo Vo=V, + 5 (1t a)(o-vyo. order of the density instability length scale.
At short length scales, the mechanism of creation of post-
.. . . ) ~collisional velocity correlations has been studied in detail. It
Here o is the unit vector oriented along the line passingyrns out that the hard sphere dynamics implies a relation
through the centers of the spheres at the moment of the inyetween the two-particle density of precollisional and post-

pact,vi;=V; —V,, and Os a<1 is the restitution coefficient, collisional stateg4]. In the IHS model it takes the form
measuring the degree of inelasticity. The transformation

conserves momentum but, when<1, does not conserve

energy. The loss of energy equals O(=ryy V]_Z)ifz(rl Vi t— 0o )
> V1, V2,
a

12 12 2 2\ m AV 2 A
§m(01 tus _Ul_vz)—_z(l_a )V (2 =0(ryp Vi) fa(ry,vy,ri—oo,vy,t), (4)

Whena=1, energy conserving elastic collisions are recov-where ® is the unit step function anfl, denotes the two-
ered. It is useful to define the inelasticity coefficiept (1 particle reduced density. Equatidd) implies that for «

—a)/2, that vanishes in the elastic limit. <1, f, is discontinuous at contactrg,|= o) when passing
The precollision velocities\; , v3) leading to the veloci- from the hemisphere ;,-v,,<0 (precollisional configura-
ties (vq, Vv,) are found by inverting the collision lagd), tion) to the hemisphere,,- v;,>0 (postcollisional configu-
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ration [5]. It also follows from Eq.(4) that uncorrelated where® denotes the unit step function adis the Dirac
precollisional states become correlated after a binary collidistribution.
sion. In order to write down the Bogoliubov-Born-Green-

In Ref.[5] the presence of precollisional velocity correla- Kirkwood-Yvon (BBGKY)) hierarchy coupling the evolution
tions has also been observed with the use of molecular dyaf the distributionsf¢(1, . .. s;t), we introduce the genera-
namics simulations. It is the aim of the present paper to studjor of the s-particle free streaming
the precollisional correlations in a systematic way starting
from the microscopic equations of motion. This issue is of S S 9
primary importance for the applicability to granular fluids of Lo(1,...8)=2 Lo(i)=2, vj- I (8)
the Boltzmann and of the Enskog kinetic theories, as both of =t =1 )
them neglect these correlations. It should be stressed that | ; ;
contradistinction to elastic fluids, the IHS model has no equi-ghd the generator of the fuskparticle dynamics
librium state with uncorrelated velocities. s

Our study is of fundamental nature. Therefore, we chose L£L*1,...8)=Lo(1,. .. 3)_2 T(ij). 9
an idealized initial condition and the low density limit in i<
order to study in a transparent way the effect of dissipative
collisions in the generation of precollisional velocity corre-  The BBGKY hierarchy readgs,2]
lations.

In Sec. Il the hierarchy equations are used to derive the
formulas for the lowest order in density and in inelasticity
contributions to the precollisional velocity correlations. They
result from the propagation of the postcollisional correlations( g
through correlated sequences of binary collisions. In Sec. ”lE“LEa(l’ e ,S)] fs(1,...81)
the effect of correlations on some collisional averages i
computed. In particular the modification they introduce into s _
the virial pressure is discussed therein. In Sec. IV we com- =2, | d(s+1)T%(j,s+1)fs (1, ... s,5+1t),
pare the analytic results with molecular dynamics simula- =1
tions. Section V contains concluding remarks.

%+£O(1)]f1(1;t):J d2T¥(12)f,(12;), (10

s=2,3,... .(11
Il. PRECOLLISIONAL VELOCITY CORRELATIONS The notationdj=dr,dv; has been used in writing Eq&0)
In what follows, we will study two-dimensiong2D) sys-  and(11).
tems. The extension to three dimensions is straightforward. Suppose that at the initial momet#0 the fluid is in
We adopt the short-hand notation thermal equilibrium at some temperatureThe reduced dis-
tributions have the form

JE(rJ 'Vj)' j:1,2,..., (5)
S
for one-particle states, where, v; are the position and the fo(1,...50)=n%gr,, ... Js)H or(v), (12
velocity vectors, respectively. j=1
At time t, the state of the fluid can be described by the set
of reduced distribution$(1,2, . .. s:t), s=1,2, ... repre- Wheren is the number density of the particlegs® is the
senting the densities afparticle configurations. configurationals-particle distribution, and

The evolution of the state of the fluid in the course of time )
can be conveniently described with the use of the binary mu ]

— v)= exp — ==
collision operatorT“(i,j), corresponding to the inverse col- er(v) 27T p‘ 2T

lision law (3). In two-dimensionsT“(i,j) acts on a function
W(ri,vi,rj,v;) according to the formul§6,2]

(13

is the Maxwell distribution in 2D.
The equilibrium statg12) is invariant under the elastic
?w\l,(r‘ VTV hard disk dynamics witlae=1. However, wherw<1, dissi-
P VialjaVj . . . ..
pation of energy occursee Eq(2)], and inelastic collisions
L R 1 . (1) imply the process of cooling down. Although the initial
:Uf dU(U'Vij)(U'Vij)[—25(fij —oo)b(ij) state(12) does not contain any correlations between the ve-
@ locities, the dissipative dynamics, contrary to the elastic one,
does create them. It is why the choice of the initial sta®
—8(r+ m})] W1y Vi, FLV)), (6)  permits to study purely dissipative effects.
Our object here is to study the precollisional correlations
resulting from the inelastic character of collisions. We shall
where thus be interested in determining the structure of the two-

. particle densityf,(12;t) in the precollisional phase-space
DX ()W (r Vit V) =Wt M V), (D region ’
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F1-V15<O0, The precollisional velocity correlations are created by
(14) three-particle processes contributing to the term

|r12|:O-+. tL“(123
To this end we shal_l use the formal_ sqlution o_f _the hier- nf dse 123 (20
goneral eauatonil can be rewrien as i Eq. (17, Using the relation
fo(l,...s)=e L@ Df (1 ... s0) £(123 4123 =0, (22)
s where £(123)=£*=1(123) is the generator of the elastic
+ Z fthe*(t*r)E“(l, e s)f d(s+1) three-particle dynamics, we find
i=1Jo

_ —t£ %(123)¢e
xT(j,5+ D)feq(L, ... S5+1:7). (15 ”fd3e fe(123

Using Eq. (15 and keeping only two- and three-body :nj dS{ e tL(123) 4 jthi
propagators in the expression fdp(12;t), which corre- o JT

sponds to the lowest order terms in the density expansion of

the dynamics, we find x[e™ " w(lgg)e_(t_T)L(m)]] feq123)

1
—f,(12;t) ! «
n2 ° =nf d3[fe°(123)+f dre£°(129)

0

t
:e_wa(lz)g(zm(r12)<PT(Ul)<PT(Uz)+nf dTJ d3 o = ]
0 XX [T -T()HIFY123 . (22
<
x e (DT LN Te(13) + T4(23) e (129 -
Only the last term in Eq(22) contains the velocity corre-
Xg5Xri,ro,ra)er(vy) er(va) er(vg)+-- . (16 lations. We focus here our attention on its form close to the
elastic limita— 1. Using the definitiong6) and (7) we get
The initial condition(12) has been used in writing E(L6).

The formula(16) for f, is physically valid at the short time [T*(ij)—T(ij)]feq123

scale of the order of few mean free times because, starting

from the initial moment, only the dynamics of two and three _ fe°(123)0'f do(a-vi)O(o-vi;)
isolated groups of particles is taken into account. 4 4

In what follows we will retain only those terms in Eq.

(16) that contribute to velocity correlations in the precolli- X &(rij—oa)H (o Vi), (23
sional region(14). The first term on the right-hand side of h
Eqg. (16) involves two-particle dynamics with no precolli- where
sional correlations. The second term can be conveniently re- 1 m(1—a?)
written in the form @iy )= LS
H (o.vij)—azexp{ AT (o-vij) ]
n | d3 et (123)_ gL 12+ £o(3)] A
J { ; =qgh(o-vij))+0(q?), (24)

3
ith
nga(rlerarS)ll:[l e1(v)). 17 W

~ m .
h(a-vij):4{1—ﬁ(a-vij)2 . (25)

To the lowest order in density

3 Inserting Egs.(23) and (24) into Eq. (22) and keeping
gg"(rl,rz,r3)=H O(|rij|— o). (18)  only the term linear irg we arrive at the following represen-
=1 tation of the term responsible for precollisional correlations

We define t 3 o
qnf d3fe°(123)fd7e—fﬂ<123>2 o| do(a-vy)
0

i<j

3 3
f 0(123)51[[1 ®(|r”|_0),ﬂ1 er(vy). (19 XO(0-vij) 8(rij— ao)h(o-v;)). (26)
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tions. The case of four collisions occurs rarely, and will not
be considered.
Inserting into Eq.(26) the binary collision expansion

,
e T1£(123)— g~ 11£o(123) f 1d7_2 e~ (71~ 72)£o(123)
0

t X[ Lg(123 — £(123)]e” 2£0(12)4...
(27)

we find the sum of four terms corresponding to the so-called
ring events. The graphical representation is given in Fig. 1.
Analytically, we have to evaluate the expression

@(—rlz-vlz)an d3{1,(23,12+1,(13,12
+14(23,13+1,(13,23} |}, - o+, (28)

where
t 7]
I (ab,ij ):fe0(123)J drlJ dr, e~ (117 72)Lo(123) 5
0 0

XJ' do1 (01 Vap) O (01 Vap) 8(F ap— 001

X bgl(ab)e—fzﬂoﬂ”)a f doy(op-vi))
XO(0-Viy) 8(rj—oor)h(0p V). (29)
The time integrations in Eq29) can be performed owing

to the presence of two delta distributions. After rather
lengthy but straightforward calculations one finds

11(23,12 =4 123 O (I y3- V25) O[ 07— |1 o5 *+ (1 23 V23) ]

XO[(vi—V3)- (1= Vviem™)]

2 2 1
XO| 0°—[r1o— Vo7 | T
lvi—v3|
* 2
FIG. 1. Dynamical event corresponding(® 1,(23,12) andb) X[(V1=V3) - (ria= Vi) )7 | O (7 —7)
1:(23,13). The dynamical events correspondingl {d3,12) and
1:(13,23) are obtained replacing the role of particles 1 and @)in X O (t— 7% )h[(}z' (V1_V§ ), (30)

and (b), respectively. The duration of the internal free flights are
7, and (#** —7*); and the distance traveled in the flights &e h
I,, andls. wit

[V2d 7 =T 53 Vg [Vog = o = [ 20 *+ (I 23 Vo3 ! [V ),
It is known that the three-particle elastic hard disk propa-
gator exp—7£(123)] has a finite binary collision expansion,

. C o . A *
because between three hard disks on an infinite plane at most 0= 237 VasT" s
four collisions can occuf7]. We shall study here dynamical . o
events involving sequences of three collisional configura- V3 =Vo— (Va3 01)0q,
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[Va =V |2(7% = 7%) = (r 15~ Vaor*) - (Vi=V3) = VIVa = V3 [[ 02— (1 19— Vo™ ) 2]+ [(T 12— Vio7™ ) - (V1= V3) 12,

0T =T 15— Vo™ — (V1= V3 ) (7% — 7%),

and
11(23,13 = Y123 O (r 23 Vpa) O[ 0% — |1 3 2+ (I 23 Voz) 21O (V13— V3 ) - (F 13— V137 ) 1O | 02— [ 13— Vy37* ]2
—————[(V;— V%) (r13— Vi) 12| O (7% — %)@ (t— 7 )h[ o (v, — V)], (32
lvi—v3|?
with
Vgl 7% =T 93 V3l [Vag — Vo = [1 23 #+ (I 23 Vaa/ Vg )2, (33

0'0'1:r23_V237'*,

V3 =Vz+ (Vo3 01) 01,

2 _ 2r 2 2 2
Vi— V3 [2( 7 _T*)—(rls_VlsT*)'(Vl_Vg)_\/|V1_V§| [0%— (13— Via™ )]+ [(r13— Vigm™) - (Vi —V3) 1%,

0'(}2:r13_V13’T*_(Vl_Vg)(T** _T*).

In summary, for the precollisional phase-space region Ill. EFFECT OF PRECOLLISIONAL CORRELATIONS
given by Eq.(14), the contributions td,(12;t) that bring ON OBSERVABLES

. ) A
velocity correlationsf;, are The precollisional velocity correlations modify the values

of macroscopic observables. In this section the analytic ex-
1 pressions for collisional integrals of the form
—2®(—r12-v12)f§(12;t)||r12|=0+
n

f do dvy dv, O(— 0 vip) F(12)A(12)]; - s (36)

=qn®(—r12-v12)f d3{1,(23,12 +1,(13,12
will be studied for phase functior’s(1,2) that depend on the
(34)  Velocities of two particles and on their relative distance.
Using Eqgs.(34) and (35) the collisional integral36) can
be written as

+1,(23,13+1,(13,23},

12|:0'+'

Then, in the precollisional regiori,(12;t) can be written as

the sum of two terms “ ~
j do dv; dv, O (=0 Vi) fo(121)A(12)], — oo

O (=112 V1) F2(12;0) || =0+ 2

g ~ -~
=\ X~ th[l])nzf d(TdVldV2®(_O"V12)
={O( =15 V12) YN*@o(v1) @o(v2) ™
~ 3.2
+O(—r2 Vi) 3120} | =0+, (35 X (V1) @(V2)A(1D];, - oo+ N T*qRIA],
(37)
Wher(=T the first term mcludgs all the contributionsftothat where the ring integral operat@, is defined as
contain no velocity correlations.
We have found that velocity correlations were created at
short length scalefprecollisional configurationsy the dis- R[A]= U*ZJ dodv; dv, d3 O (—o-vy){1,(23,12
sipative dynamics of the IHS model. Starting from an equi-
librium uncorrelated state, the dynamics creates these corre- +1,(13,12+1,(23,12+1,(13,23'A(12)|,. _
lations by the mechanism of ring collisions, at the short time f1277¢9
scale of the order of few mean free times. (38
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and where the granular temperatufeis defined in two dimen-
sions by

1 - A
X= 75 dUdVldvz®(_U'V12)f2(12)|r12=o&, 1
n?ar T=— D> m(vi—Vv)?, (48)
(39 N Z =Y

where y is thus the average precollisional pair correlationwhere N is the number of particles and is the hydrody-
function at contact that should be distinguished from thenamic velocity.

postcollisional part because of the discontinuity described in  With the use Eqs(37), (46), and (47), p, can be ex-
the Introduction(notice that for elastic sphereg,reduces to  pressed, to the first order in density, as

the pair correlation function at contag¢t].

If A'is symmetric in 1 and 2, then the ring integral takes noq m(o-Vy)?
the form p2=1+ Ry —2R{1]|, (49
2 T
RiA]=2(Ry[A]+Ry[A]), 40 .
(A= 2(RulAl+Ra[AD 40 where lim _  x=1 has been used.
where The velocity correlations manifest themselves as a devia-
tion of p, from one. The correction to the elastic fluid value
th[A]:(fo do dv, dv, d3 O (—a-vy,) of py is proportionz?ll tog. The density dependence is more
complex because in the time dependenceRpimean free
X 1,(23,12A(12)], 5, (41  Path cutoffs must me taken into accolisee the discussion

after Eq.(52)].
(b) Another collisional average of interest is

RZI[A]=0‘2J do dv, dv,d3 O (—o-vy,)

ViV
r={— . (50
X11(23,13A(12)|; = e (42) Vi=val [
(a) Virial pressureln granular fluids, the pressupecan only In the absence of precollisional velocity correlatiohs,
be computed with the use of the mechanical definition. In thevanishes exactly for a fluid at rest. This property maKes
case of the IHS model, one finfi§] quantity very sensible to the presence of velocity correla-
e o tions, allowing to test with accuracy theoretical predictions.
mn“To“x(1— i i
b=nT+ 2)(( q) 0. 3 Using Eqgs.(37) and (46), we obtain
1 -~ A
where I'= ;nzagq R (v1-Vo)|v1o: o], (52)
:qu 1) (44) To first order inn and g, the collision frequency can be
P2 2mna?y T 2 el approximated ag=2no /7 T/m. Then,
and v is the collision frequency qno? ..
= ———=R{[(v1-V2)|v12 o]. (52
2\7T/m

v= Ef dodvy dv, dry, f2(12)O(—Vyy Ty
n The ring integralg38) depend on the timé because the
(45) distributionf, is time dependent. In 2D it is known that for
large times, these integrals diverge withrhis problem has
The collisional average is defined in general by been extensively discussed in the theory of transport phe-
nomena in 2D fluid¢see Chap. X i8] and references given
1 N therein. The divergence appears because one considers the
<A>co||:mf dodvy dvadry; A(12)F5(12)0 (= Vip 1)) dynamics of three isolated particles. The traveled distances
can be, then, arbitrarily large. In a real system, the particles
X 8(F 19— 00) Vg T 1. (46) ~ cannot cover large distances because of the presence of the
other particles in the system. A complete resummation of
It can be seen that, for any one-particle probability den{ing events in the expansioil6) makes appear a cutoff of
sity, the following equality holds: the order of the mean free path.
In the present study, the mean free path cutoff will be
A A N introduced in a phenomenological way. Consider the internal
f do dv; dv, O(— 0 Vi) @(vy) @(vo) Mo vip*=27T, distances traveled by the particles in the ring eventsi,,
(47) and|; (see Fig. 1 The first way M1) is to impose that

X 8(F 19— 00)|Vap T3]
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none of these three distances can exceed the mean free path 50

/. Asecond way §2) consists in multiplying each diagram

by the exponential factoe™ ('t*'213/ which models the

probability of collisionless motion in the homogeneous gas.

Clearly, the numerical results obtained along these two ways

should be looked upon as order of magnitude estimations.
We define the mean free path ring integrBls as

RI1]

R/[A]zo’zf dodv, dv,d3 O (—o-vi){l (23,12

+1,(13,12+1,(23,12+1,(13,23}A(12)|,___ 5
(53

Here, the integral$, are obtained from, [see Eq.(29)]
by replacing the step functio® (t— 7**) by the mean free o o
path cutoff 1 10 100

Mean free path [G]

O/ ~1)0(/=1)0(/~1y), (54)
FIG. 2. Numerical evaluation d®[1] as a function of the mean
for the first method K11), or by free path used in the cutoffn a logarithmic scale Data is pre-
sented for two and three dimensions using the first cutoff method
exd — (I, +1,+13)/77, (55) (M1) and the second cutoff methot¥@).
for the second methodV(2). ditions are met, the integrand is evaluated and added up. A
According to Fig. 1 the distancédgsare given as typical series of 19 generated configurations is enough to
obtain the integrals with a precision of 1%. More efficient
=0, 7%, (56) algorithms can be designed to speed up the calculation, but
the algorithm described above is fast enough for our pur-
l,=v,7, (57 pOSes. . . . . .
The analysis presented in Sec. Il and in this section can be
lg= 03 (7% — 7%) (58) directly extended to three dimensions. Similar expressions

for f, in the the precollisional region and for the ring inte-
grals are obtained. However, there is a qualitative difference
in the numerical computation of ring integrals. In three di-
mensions, these integrals are convergent for large distances,
contrary to the two-dimensional case. In Fig. 2 we present
the numerical evaluation d®,[ 1] as a function of the mean
free path, using both cutoffs methods in two and three di-
mensions. It is seen that in 2D there is a logarithmic diver-
ls=v3 (7" —7%) (61 gence with/ but in 3D both methods converge to the same
value. Similar results are obtained for the ring integrals as-

for I (23,13). sociated top, andT".
The timet has been eliminated from the ring integrals.

However, it should be remembered that our expressions ap-
ply at the short time scale on[gee the comment following IV. COMPARISON WITH MOLECULAR DYNAMICS
Eqg. (16)]. The mean free path integrals take into account the SIMULATIONS

finite density of the system. They Wi||. yield finite values for  \wnen a granular fluid composed of IHS particles is let to
P2 and I', that can be compared with the results of MD gyglve freely, it cools down homogeneously. This nonsteady
simulations. state can be transformed into a nonequilibrium steady state
For a given mean free path cutoR,[A] can be evalu- (NESS by means of a thermostating mechanigys]. After
ated numerically using Monte Carlo integrations as follows.gach dissipative collision, the lost energy is reinjected into
Three-particle configurations are sampled sorting the velocithe system by multiplying all the velocities by the same
ties from the the Maxwellian distributiofi.3), the normal  yajye, so as to keep kinetic energy constant. Due to the lack
vectoro is uniformly distributed over the unit circle, and the of an intrinsic energyor time) scale in the IHS model, the
position of the third particle is placed at random. Given amultiplication of all velocities by a factor does not modify
configuration, it is checked if the ring event takes plézen-  the collision sequence in the system.
ditions represented by step functions in E@O0) for In Ref. [5] molecular dynamics simulations of the NESS
I1(23),(12)] or in Eq.(32) for theI[(23),(13)]). If the con-  were done for low dissipation and moderate density. In these

for | (23,12) and by
|1:l)17'** y (59)

|2:l)27'*, (60)
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TABLE I: Comparison of the.values qu'andI‘ computed in o(v)=or(v)[1+q¢(v)], (62
MD simulations and the theoretical predictions. Both cutoff meth-
ods are used. Results are presented at three different densities.

where ¢ is the Maxwellian distribution,

Simulation M1 M2
n=0.05 - )
r 0.09% 0.08Qy 0.045 _ m%t oMt
Py 1-0.169 1-0.19 1-0.11q A (63
n=0.1
r 0.27 0.09 0.05
[} 1-0.25 1-0.25 1-0.14 andT is the(constant granular temperature in the NESS. At
n=0.2 higher densities, corrections of ordeandnq are expected.
r 0.44y 0.09 0.0: Using the same kind of arguments as in Sec. Il, it can be
P2 1-0.65 1-0.28 1-0.15 deduced that the dissipative dynamics will give rise to veloc-

ity correlations. In this case the initial distribution function is
not the thermal equilibrium onEEq. (12)] but rather

simulationsp, andI” were computed showing the existence
of velocity correlations. In what follows, units are chosen so

that the particle masses, diameterso, and also the tem- - _ _ _
peratureT of the NESS are set to one. 131230 =0(r12= 0)8(r15~ )01z~ o) erlvy)
In Ref. [5] the simulations were done at three different X o1(vy)et(v3)
densitiesn=0.05,n=0.1, andn=0.2, with mean free paths
/'=6.64,/=3.10, and/=1.35. The last value corresponds X[1+a(d(v1) + b(va) + $(v3))]
to a dense system where we do not expect to find good nu- = 123[1+q(d(v1) + (vy) + (v3)],
merical accord with the theoretical predictions. For each den-
sity, simulations at different inelasticities were done and the (64)

results forp, andI” were fitted by linear dependence@®fin

Table | we present the comparison of the simulation results . . . L
with theoretFi)caI predictions P where we have kept the first order in density and dissipation.

At this point, it is instructive to analyze the comparison Us_ing the initial_ conditk_)r(64), instead of t_he equilibrium
between theory and simulations. Quite generally, the numerign: N the analysis done in Sec. W? obtain that the follow-
cal comparison comes out quite well in view of the phenom-Ing term that must be added to H6):
enological way in which the mean free path cutoff is intro-
duced. The agreement gets worse at higher density where the
mean free path is smaller. This discrepancy is not surprisinqnf d3 feY(123)e £UBY (1) + P(vo) + d(v3)]
because our approach is based on a density expafsitin

large mean free pathswhereas fom=0.2 the mean free

path is of the order of the disk diameter. =qnf d3 14123 [ ¢ (v1(0))+ (v 2(0))+ H(v3(0))],
Both the simulations and theory agree on the linear de-
pendence on inelasticities and predict the same sign of the (65

correlations. The positive sign @f means that the precolli-
sional velocities of the particles are more parallel than in the . _ o
elastic case. This tendency to align the velocities is a consevhere we have kept only the term linear gp The initial
quence of the inelastic collision lad). After a collision  Vvelocitiesv;(0) are obtained by the elastic dynamics of three
with a third particle, the first pair in the ring sequence arrivessolated particles.
to their next collision with aligned velocities. This effect is ~ Equation(65) produces velocity correlations in the pre-
what is taken into account in the derivation presented in Secollisional region if at least one of the initial velocitieg(0)
Il. is a function of bothv,; andv,, the velocities of particles 1
The interpretation of the velocity correlations as reflectingand 2 at timet. The previous condition can be met only if
the fact that particles arrive to collisions with aligned veloci- particles 1 and 2 have collided betweer0 andr=t. As
ties is consistent with the results obtained for The con-  We are interested in evaluatirig in the precollisional region
tribution to the pressure from the correlations is negative(that is, particles 1 and 2 are about to collid&q. (65)
reducing the value corresponding to the elastic case: as tH@ntributes to correlations at the ring events described in
velocities before collision are more parallel, the transferredSec. Il. Then, the initial velocities;(0) are replaced by the
momentum is smaller. incoming velocitie* , v3* , andv3* (see Fig. 1 Again,
In the NESS, the one-particle velocity distribution func- we have neglected the events involving sequences of four
tion is not Maxwellian but a distorted one. In the Boltzmanncollisions.
and low dissipation limit the velocity distribution function ~ Then, coming from this term there are new terfs
can be computefil0], obtaining similar tol,, to be evaluated,
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Ji(23,12 =123/ O (r 25-V29) O (0 — |1 g *+ (F 23- V23) %)

XO[(vi—V3 ) (r1p—Viom)]

1
X@ 0'2_[r12_V12’T*]2+

|V1_V§|2

X[(V3=VE) - (1= Vom) 2 | @ (7% — 7%)

XO(t=7")[(vT")+ d(v3" )+ (v5*)],
(66)

where the different symbols are defined in E8fl) and

VY =V —[(v;—V3) - 5], (67)
V¥ =Vt [(Vi—V3)- 03] 0y, (68)
V3 = Vgt (Vg 0107y (69

And also
Ji(23,13 =Y 123)O[ 123 Vo3] O (02— |1 29+ (1 23 V23)?)

XO[(vi—V3)-(riz—Viar™)]

1
X@ 0'2—[r13—V137'*]2+

|V1_V§|2

X[(Vi=V3) - (r13=vism™) ]2 | O (7 — 1)

XO(t=r")[p(vT* )+ d(v3* )+ (v3")],
(70

where the different symbols are defined in E8g) and

Vi* =vi—[(v3—V3)- 03] 0y, (72)
V5 =V (Vg 0101, (72
VY =Va+[(vi—V3)- 0p]0. (73)

Collecting all termsf$ can be written as
1 - c
¥®(_U'V12)f2(12§t)|r12=g[7
:qn@)(—&.vlz)f d3{1,(23,12+1,(13,12

+1,(23,13+1,(13,23 +J,(23,12 + J,(13,12
+3,(23,13+3,(13,23}, s - (74)
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TABLE Il. Evaluation ofI" andp, using the ring integrals that
include the distortion to the Maxwellian distribution. Results are
presented for the same densities of Table I.

M1 M2
n=0.05
r 0.08% 0.0471
o) 1-0.19 1-0.11g
n=0.1
r 0.1(g 0.05
P2 1-0.2 1-0.14
n=0.2
r 0.09 0.0x¢
o] 1-0.28 1-0.15

of the nonequilibrium velocity distributio62). This kind of
velocity correlations have been largely studied in nonequili-
brum states of elastic systems, where the velocity distribu-
tions get distorted.

To compute collisional integrals, the ring integral operator
must be redefined as

Rt[A]=a’2J dodv, dv,d3 O (—o-vi){14(23,12

+1,(13,12+1,(23,12+1,(13,23 + 3,(23,12
+3,(13,12+J,(23,12+ 3,(13,23}A(12)] 5
(75

Mean free path cutoffs can be introduced in the same way
as before. Numerical evaluation Bfandp, using these ring
integrals are presented in Table Il. The densities are the same
as in Table 1. It is obtained that the distortion of the Max-
wellian distribution in the NESS produces a very small con-
tribution to velocity correlations. The most important part of
the correlation is created by dynamical process described in
Sec. Il.

V. CONCLUSIONS

We have shown that, in the inelastic hard sphere model
for granular fluids, correlated sequences of collisions give
rise to precollisional velocity correlations. Inelastic collisions
produce postcollisional velocity correlations even if system
is initially at equilibrium. The generated correlations are
propagated dynamically to the next collision. As a result,
particles arrive to collision with their velocities more parallel
than in elastic systems. We considered the lowest order con-
tribution in density and inelasticity to the precollisional cor-
relations. At this order, the correlations are produced by the
so-called ring events.

In elastic systems, a small number of collisions is enough
to produce local thermodynamic equilibrium, where particles
have uncorrelated velocities. In the IHS model, on the con-
trary, a small number of collisiongwo in the ring events we

The new terms in Eq(74) represent the precollisional considereflgives rise to precollisional velocity correlations.
velocity correlations that are created by the elastic evolutiorThat is, in elastic systems collisions tend to reduce velocity
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correlations but, in inelastic systems, collisions create them. In a stationary state of granular systems, there is another

Therefore, velocity correlations are always present insource of precollisional velocity correlation. Correlations are
granular fluids. Not like in elastic fluids, where in equilib- produced by the distortion of the velocity distribution func-
rium velocity correlations vanish. The unavoidable presencéion in the nonequilibrium steady state. However, numerical
of velocity correlations in granular fluids puts into question calculations of this contribution to the correlations give a
the validity for these systems of the Boltzmann’s or Enskog’svery small value.
kinetic theories, that neglect precollisional velocity correla- Even though the calculations were done for the IHS
tions. New kinetic approaches must be developed that takaodel, it is expected that the mechanism studied here for the
into account the creation and propagation of velocity correcreation of velocity correlations is generic to granular sys-
lations in such systems. tems.

Introducing phenomenological mean free path cutoffs, the It would be instructive to perform a similar analysis for
effect of the velocity correlations ifv (that vanishes in the time correlation functions that lead to expressions for trans-
absence of correlatigrand the pressure is computed numeri- port coefficients in granular fluidsl1].
cally. The numerical predictions are compared with molecu-
lar dynamics simulat_ions r(_asults, obtaining good qualitative ACKNOWLEDGMENTS
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