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Precollisional velocity correlations in a hard-disk fluid with dissipative collisions
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Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a
density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced
distributions, we predict the presence of precollisional velocity correlations. They are created by the propaga-
tion through correlated sequences of collisions~ring events! of the velocity correlations generated after dissi-
pative collisions. The correlations have their origin in the dissipative character of collisions, being always
present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of
a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure
shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative
agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions
and molecular dynamics results that showed evidence of precollisional velocity correlations@R. Soto and M.
Mareschal, Phys. Rev. E63, 041303~2001!#.
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I. INTRODUCTION

Granular matter is characterized by energy dissipation
collisions. If energy is continuously injected into granul
systems, they become fluidized. Granular fluids resem
elastic fluids, and kinetic and hydrodynamic descriptio
have been used in their description. In the theory of gran
fluids, the simplest model describing the effects of inelas
ity is the inelastic hard sphere~IHS! fluid. Grains are repre-
sented by impenetrable hard spheres of diameters and mass
m. The motion of the spheres between collisions is free. A
binary encounter the velocitiesv1 , v2 of the colliding pair
suffer the instantaneous transformation

v1→v185v12
1

2
~11a!~ŝ•v12!ŝ, ~1!

v2→v285v21
1

2
~11a!~ŝ•v12!ŝ.

Here ŝ is the unit vector oriented along the line passi
through the centers of the spheres at the moment of the
pact,v125v12v2, and 0<a<1 is the restitution coefficient
measuring the degree of inelasticity. The transformation~1!
conserves momentum but, whena,1, does not conserve
energy. The loss of energy equals

1

2
m~v18

21v28
22v1

22v2
2!52

m

4
~12a2!~ ŝ•v12!

2. ~2!

Whena51, energy conserving elastic collisions are reco
ered. It is useful to define the inelasticity coefficientq5(1
2a)/2, that vanishes in the elastic limit.

The precollision velocities (v1* , v2* ) leading to the veloci-
ties (v1 , v2) are found by inverting the collision law~1!,
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v1* 5v12
1

2
~11a21!~ ŝ•v12!ŝ, ~3!

v2* 5v21
1

2
~11a21!~ ŝ•v12!ŝ.

The present paper is concerned with dynamic correlati
in fluidized granular matter, represented by the tw
dimensional IHS model. Our object is to study precollision
correlations at the microscopic length scale, of the orde
the hard sphere diameter. This question has not yet b
sufficiently discussed. First studies of correlations, based
fluctuating hydrodynamics and on the ring kinetic equatio
were focused on the effects of inelasticity on the large d
tance structure of the fluid@1–3#. At weak inelasticities al-
gebraicr 2d tails have been found in the spatial velocity co
relations, with an exponential cutoff at distancesr of the
order of the density instability length scale.

At short length scales, the mechanism of creation of po
collisional velocity correlations has been studied in detail
turns out that the hard sphere dynamics implies a rela
between the two-particle density of precollisional and po
collisional states@4#. In the IHS model it takes the form

Q~2r12•v12!
1

a2
f 2~r1 ,v1 ,r12sŝ,v2 ,t !

5Q~r12•v128 ! f 2~r1 ,v18 ,r12sŝ,v28 ,t !, ~4!

whereQ is the unit step function andf 2 denotes the two-
particle reduced density. Equation~4! implies that for a
,1, f 2 is discontinuous at contact (ur12u5s) when passing
from the hemispherer12•v12,0 ~precollisional configura-
tion! to the hemispherer12•v12.0 ~postcollisional configu-
©2001 The American Physical Society06-1
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ration! @5#. It also follows from Eq.~4! that uncorrelated
precollisional states become correlated after a binary c
sion.

In Ref. @5# the presence of precollisional velocity correl
tions has also been observed with the use of molecular
namics simulations. It is the aim of the present paper to st
the precollisional correlations in a systematic way start
from the microscopic equations of motion. This issue is
primary importance for the applicability to granular fluids
the Boltzmann and of the Enskog kinetic theories, as both
them neglect these correlations. It should be stressed th
contradistinction to elastic fluids, the IHS model has no eq
librium state with uncorrelated velocities.

Our study is of fundamental nature. Therefore, we ch
an idealized initial condition and the low density limit i
order to study in a transparent way the effect of dissipa
collisions in the generation of precollisional velocity corr
lations.

In Sec. II the hierarchy equations are used to derive
formulas for the lowest order in density and in inelastic
contributions to the precollisional velocity correlations. Th
result from the propagation of the postcollisional correlatio
through correlated sequences of binary collisions. In Sec
the effect of correlations on some collisional averages
computed. In particular the modification they introduce in
the virial pressure is discussed therein. In Sec. IV we co
pare the analytic results with molecular dynamics simu
tions. Section V contains concluding remarks.

II. PRECOLLISIONAL VELOCITY CORRELATIONS

In what follows, we will study two-dimensional~2D! sys-
tems. The extension to three dimensions is straightforw
We adopt the short-hand notation

j [~r j ,vj !, j 51,2, . . . , ~5!

for one-particle states, wherer j , vj are the position and the
velocity vectors, respectively.

At time t, the state of the fluid can be described by the
of reduced distributionsf s(1,2, . . . ,s;t), s51,2, . . . ,repre-
senting the densities ofs-particle configurations.

The evolution of the state of the fluid in the course of tim
can be conveniently described with the use of the bin
collision operatorT̄a( i , j ), corresponding to the inverse co
lision law ~3!. In two-dimensionsT̄a( i , j ) acts on a function
C(r i ,vi ,r j ,vj ) according to the formula@6,2#

T̄aC~r i ,vi ,r j ,vj !

5sE dŝ~ ŝ•vi j !Q~ŝ•vi j !H 1

a2
d~r i j 2sŝ!bŝ

* ~ i j !

2d~r i j 1sŝ!J C~r i ,vi ,r j ,vj !, ~6!

where

bŝ
* ~ i j !C~r i ,vi ,r j ,vj !5C~r i ,vi* ,r j ,vj* !, ~7!
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whereQ denotes the unit step function andd is the Dirac
distribution.

In order to write down the Bogoliubov-Born-Green
Kirkwood-Yvon ~BBGKY! hierarchy coupling the evolution
of the distributionsf s(1, . . . ,s;t), we introduce the genera
tor of thes-particle free streaming

L0~1, . . . ,s!5(
j 51

s

L0~ j !5(
j 51

s

vj•
]

]r j
~8!

and the generator of the fulls-particle dynamics

L a~1, . . . ,s!5L0~1, . . . ,s!2(
i , j

s

T̄a~ i j !. ~9!

The BBGKY hierarchy reads@6,2#

H ]

]t
1L0~1!J f 1~1;t !5E d2 T̄a~12! f 2~12;t !, ~10!

H ]

]t
1L a~1, . . . ,s!J f s~1, . . . ,s;t !

5(
j 51

s E d~s11!T̄a~ j ,s11! f s11~1, . . . ,s,s11;t !,

s52,3, . . . . ~11!

The notationd j5dr jdvj has been used in writing Eqs.~10!
and ~11!.

Suppose that at the initial momentt50 the fluid is in
thermal equilibrium at some temperatureT. The reduced dis-
tributions have the form

f s~1, . . . ,s;0!5nsgs
eq~r1 , . . . ,r s!)

j 51

s

wT~v j !, ~12!

where n is the number density of the particles,gs
eq is the

configurationals-particle distribution, and

wT~v !5
m

2pT
expH 2

mv2

2T J ~13!

is the Maxwell distribution in 2D.
The equilibrium state~12! is invariant under the elastic

hard disk dynamics witha51. However, whena,1, dissi-
pation of energy occurs@see Eq.~2!#, and inelastic collisions
~1! imply the process of cooling down. Although the initia
state~12! does not contain any correlations between the
locities, the dissipative dynamics, contrary to the elastic o
does create them. It is why the choice of the initial state~12!
permits to study purely dissipative effects.

Our object here is to study the precollisional correlatio
resulting from the inelastic character of collisions. We sh
thus be interested in determining the structure of the tw
particle densityf 2(12;t) in the precollisional phase-spac
region
6-2
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PRECOLLISIONAL VELOCITY CORRELATIONS IN A . . . PHYSICAL REVIEW E64 031306
r12•v12,0,
~14!

ur12u5s1.

To this end we shall use the formal solution of the hi
archy ~10!, expressed in terms of the initial condition. Th
general equation~11! can be rewritten as

f s~1, . . . ,s;t !5e2tL a(1, . . . ,s) f s~1, . . . ,s;0!

1(
j 51

s E
0

t

dt e2(t2t)L a(1, . . . ,s)E d~s11!

3T̄a~ j ,s11! f s11~1, . . . ,s,s11;t!. ~15!

Using Eq. ~15! and keeping only two- and three-bod
propagators in the expression forf 2(12;t), which corre-
sponds to the lowest order terms in the density expansio
the dynamics, we find

1

n2
f 2~12;t !

5e2tL a(12)g2
eq~r12!wT~v1!wT~v2!1nE

0

t

dtE d3

3e2(t2t)[La(12)1L0(3)]@ T̄a~13!1T̄a~23!#e2tL a(123)

3g3
eq~r1 ,r2 ,r3!wT~v1!wT~v2!wT~v3!1¯ . ~16!

The initial condition~12! has been used in writing Eq.~16!.
The formula~16! for f 2 is physically valid at the short time
scale of the order of few mean free times because, star
from the initial moment, only the dynamics of two and thr
isolated groups of particles is taken into account.

In what follows we will retain only those terms in Eq
~16! that contribute to velocity correlations in the precol
sional region~14!. The first term on the right-hand side o
Eq. ~16! involves two-particle dynamics with no precoll
sional correlations. The second term can be conveniently
written in the form

nE d3 $e2tL a(123)2e2t[L a(12)1L0(3)]%

3g3
eq~r1 ,r2 ,r3!)

j 51

3

wT~v j !. ~17!

To the lowest order in density

g3
eq~r1 ,r2 ,r3!5)

j 51

3

Q~ ur i j u2s!. ~18!

We define

f eq~123![)
j 51

3

Q~ ur i j u2s!)
j 51

3

wT~v j !. ~19!
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The precollisional velocity correlations are created
three-particle processes contributing to the term

nE d3 e2tL a(123)f eq~123! ~20!

in Eq. ~17!. Using the relation

L~123! f eq~123!50, ~21!

where L(123)5L a51(123) is the generator of the elast
three-particle dynamics, we find

nE d3 e2tL a(123)f eq~123!

5nE d3H e2tL(123)1E
0

t

dt
]

]t

3@e2tL a(123)e2(t2t)L(123)#J f eq~123!

5nE d3H f eq~123!1E
0

t

dt e2tL a(123)

3(
i , j

3

@ T̄a~ i j !2T̄~ i j !# f eq~123!J . ~22!

Only the last term in Eq.~22! contains the velocity corre
lations. We focus here our attention on its form close to
elastic limit a→1. Using the definitions~6! and ~7! we get

@ T̄a~ i j !2T̄~ i j !# f eq~123!

5 f eq~123!sE dŝ~ ŝ•vi j !Q~ŝ•vi j !

3d~r i j 2sŝ!Ha~ŝ•vi j !, ~23!

where

Ha~ŝ•vi j !5
1

a2
expH 2

m~12a2!

4Ta2
~ ŝ•vi j !

2J ,

5qh~ ŝ•vi j !1O~q2!, ~24!

with

h~ ŝ•vi j !54F12
m

4T
~ ŝ•vi j !

2G . ~25!

Inserting Eqs.~23! and ~24! into Eq. ~22! and keeping
only the term linear inq we arrive at the following represen
tation of the term responsible for precollisional correlatio

qnE d3 f eq~123!E
0

t

dt e2tL(123)(
i , j

3

sE dŝ~ ŝ•vi j !

3Q~ŝ•vi j !d~r i j 2sŝ!h~ ŝ•vi j !. ~26!
6-3
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It is known that the three-particle elastic hard disk prop
gator exp@2tL(123)# has a finite binary collision expansion
because between three hard disks on an infinite plane at
four collisions can occur@7#. We shall study here dynamica
events involving sequences of three collisional configu

FIG. 1. Dynamical event corresponding to~a! I t(23,12) and~b!
I t(23,13). The dynamical events corresponding toI t(13,12) and
I t(13,23) are obtained replacing the role of particles 1 and 2 in~a!
and~b!, respectively. The duration of the internal free flights aret,
t* , and (t** 2t* ); and the distance traveled in the flights arel 1 ,
l 2, and l 3.
03130
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tions. The case of four collisions occurs rarely, and will n
be considered.

Inserting into Eq.~26! the binary collision expansion

e2t1L(123)5e2t1L0(123)1E
0

t1
dt2 e2(t12t2)L0(123)

3@L0~123!2L~123!#e2t2L0(123)1¯,

~27!

we find the sum of four terms corresponding to the so-ca
ring events. The graphical representation is given in Fig
Analytically, we have to evaluate the expression

Q~2r12•v12!qnE d3$I t~23,12!1I t~13,12!

1I t~23,13!1I t~13,23!%u ur12u5s1, ~28!

where

I t~ab,i j !5 f eq~123!E
0

t

dt1E
0

t1
dt2 e2(t12t2)L0(123)s

3E dŝ1~ ŝ1•vab!Q~ŝ1•vab!d~rab2sŝ1!

3bŝ1
* ~ab!e2t2L0(123)sE dŝ2~ ŝ2•vi j !

3Q~ŝ2•vi j !d~r i j 2sŝ2!h~ ŝ2•vi j !. ~29!

The time integrations in Eq.~29! can be performed owing
to the presence of two delta distributions. After rath
lengthy but straightforward calculations one finds

I t~23,12!5 f eq~123!Q~r23•v23!Q@s22ur23u21~r23•v23!
2#

3Q@~v12v2* !•~r122v12t* !#

3QS s22@r122v12t* #21
1

uv12v2* u2

3@~v12v2* !•~r122v12t* !#2D Q~t** 2t* !

3Q~ t2t** !h@ŝ2•~v12v2* !#, ~30!

with

uv23ut* 5r23•v23/uv23u2As22ur23u21~r23•v23/uv23u!2,
~31!

sŝ15r232v23t* ,

v2* 5v22~v23•ŝ1!ŝ1 ,
6-4
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uv12v2* u2~t** 2t* !5~r122v12t* !•~v12v2* !2Auv12v2* u2@s22~r122v12t* !2#1@~r122v12t* !•~v12v2* !#2,

sŝ25r122v12t* 2~v12v2* !~t** 2t* !,

and

I t~23,13!5 f eq~123!Q~r23•v23!Q@s22ur23u21~r23•v23!
2#Q@~v12v3* !•~r132v13t* !#QS s22@r132v13t* #2

1
1

uv12v3* u2
@~v12v3* !•~r132v13t* !#2D Q~t** 2t* !Q~ t2t** !h@ŝ2•~v12v3* !#, ~32!

with

uv23ut* 5r23•v23/uv23u2As22ur23u21~r23•v23/uv23u!2, ~33!

sŝ15r232v23t* ,

v3* 5v31~v23•ŝ1!ŝ1 ,

uv12v3* u2~t** 2t* !5~r132v13t* !•~v12v3* !2Auv12v3* u2@s22~r132v13t* !2#1@~r132v13t* !•~v12v3* !#2,

sŝ25r132v13t* 2~v12v3* !~t** 2t* !.
io

a

ui
r

m

es
ex-
In summary, for the precollisional phase-space reg
given by Eq.~14!, the contributions tof 2(12;t) that bring
velocity correlations,f 2

c , are

1

n2
Q~2r12•v12! f 2

c~12;t !u ur12u5s1

5qnQ~2r12•v12!E d3$I t~23,12!1I t~13,12!

1I t~23,13!1I t~13,23!%u ur12u5s1. ~34!

Then, in the precollisional region,f 2(12;t) can be written as
the sum of two terms

Q~2r12•v12! f 2~12;t !u ur12u5s1

5$Q~2r12•v12!gn2w0~v1!w0~v2!

1Q~2r12•v12! f 2
c~12;t !%u ur12u5s1, ~35!

where the first term includes all the contributions tof 2 that
contain no velocity correlations.

We have found that velocity correlations were created
short length scales~precollisional configurations! by the dis-
sipative dynamics of the IHS model. Starting from an eq
librium uncorrelated state, the dynamics creates these co
lations by the mechanism of ring collisions, at the short ti
scale of the order of few mean free times.
03130
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III. EFFECT OF PRECOLLISIONAL CORRELATIONS
ON OBSERVABLES

The precollisional velocity correlations modify the valu
of macroscopic observables. In this section the analytic
pressions for collisional integrals of the form

E dŝ dv1 dv2 Q~2ŝ•v12! f 2~12;t !A~12!ur125sŝ ~36!

will be studied for phase functionsA(1,2) that depend on the
velocities of two particles and on their relative distance.

Using Eqs.~34! and ~35! the collisional integral~36! can
be written as

E dŝ dv1 dv2 Q~2ŝ•v12! f 2~12;t !A~12!ur125sŝ

5S x2
ns2q

p
Rt@1# Dn2E dŝ dv1 dv2 Q~2ŝ•v12!

3w~v1!w~v2!A~12!ur125sŝ1n3s2qRt@A#,

~37!

where the ring integral operatorRt is defined as

Rt@A#5s22E dŝ dv1 dv2 d3 Q~2ŝ•v12!$I t~23,12!

1I t~13,12!1I t~23,12!1I t~13,23!%A~12!ur125sŝ

~38!
6-5
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and

x5
1

n2p
E dŝ dv1 dv2 Q~2ŝ•v12! f 2~12!ur125sŝ ,

~39!

where x is thus the average precollisional pair correlati
function at contact that should be distinguished from
postcollisional part because of the discontinuity described
the Introduction~notice that for elastic spheres,x reduces to
the pair correlation function at contact! @5#.

If A is symmetric in 1 and 2, then the ring integral tak
the form

Rt@A#52~R1t@A#1R2t@A# !, ~40!

where

R1t@A#5s22E dŝ dv1 dv2 d3 Q~2ŝ•v12!

3I t~23,12!A~12!ur125sŝ , ~41!

R2t@A#5s22E dŝ dv1 dv2 d3 Q~2ŝ•v12!

3I t~23,13!A~12!ur125sŝ . ~42!

(a) Virial pressure.In granular fluids, the pressurep can only
be computed with the use of the mechanical definition. In
case of the IHS model, one finds@5#

p5nT1
pn2Ts2x~12q!

2
p2 , ~43!

where

p25
mn

2pns2xT
^uv12•r12u&coll ~44!

andn is the collision frequency

n5
1

nE dŝ dv1 dv2 dr12 f 2~12!Q~2v12•r12!

3d~r122sŝ!uv12•r12u. ~45!

The collisional average is defined in general by

^A&coll5
1

nnE dŝ dv1 dv2 dr12 A~12! f 2~12!Q~2v12•r12!

3d~r122sŝ!uv12•r12u. ~46!

It can be seen that, for any one-particle probability de
sity, the following equality holds:

E dŝ dv1 dv2 Q~2ŝ•v12!w~v1!w~v2!muŝ•v12u252pT,

~47!
03130
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where the granular temperatureT is defined in two dimen-
sions by

T5
1

N (
i

m~vi2v!2, ~48!

where N is the number of particles andv is the hydrody-
namic velocity.

With the use Eqs.~37!, ~46!, and ~47!, p2 can be ex-
pressed, to the first order in density, as

p2511
ns2q

2p
S RtFm~ ŝ•v12!

2

T
G22Rt@1# D , ~49!

where lim
n→0

x51 has been used.

The velocity correlations manifest themselves as a de
tion of p2 from one. The correction to the elastic fluid valu
of p2 is proportional toq. The density dependence is mo
complex because in the time dependence ofRt mean free
path cutoffs must me taken into account@see the discussion
after Eq.~52!#.

(b) Another collisional average of interest is

G5 K v1•v2

uv12v2u L
coll

. ~50!

In the absence of precollisional velocity correlations,G
vanishes exactly for a fluid at rest. This property makesG a
quantity very sensible to the presence of velocity corre
tions, allowing to test with accuracy theoretical prediction

Using Eqs.~37! and ~46!, we obtain

G5
1

n
n2s3qRt@~v1•v2!uv̂12•ŝu#. ~51!

To first order inn and q, the collision frequency can be
approximated asn52nsApT/m. Then,

G5
qns2

2ApT/m
Rt@~v1•v2!uv̂12•ŝu#. ~52!

The ring integrals~38! depend on the timet because the
distribution f 2 is time dependent. In 2D it is known that fo
large times, these integrals diverge witht. This problem has
been extensively discussed in the theory of transport p
nomena in 2D fluids~see Chap. X in@8# and references given
therein!. The divergence appears because one considers
dynamics of three isolated particles. The traveled distan
can be, then, arbitrarily large. In a real system, the partic
cannot cover large distances because of the presence o
other particles in the system. A complete resummation
ring events in the expansion~16! makes appear a cutoff o
the order of the mean free path.

In the present study, the mean free path cutoff will
introduced in a phenomenological way. Consider the inter
distances traveled by the particles in the ring events:l 1 , l 2,
and l 3 ~see Fig. 1!. The first way (M1) is to impose that
6-6
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PRECOLLISIONAL VELOCITY CORRELATIONS IN A . . . PHYSICAL REVIEW E64 031306
none of these three distances can exceed the mean free
l . A second way (M2) consists in multiplying each diagram
by the exponential factore2( l 11 l 21 l 3)/l , which models the
probability of collisionless motion in the homogeneous g
Clearly, the numerical results obtained along these two w
should be looked upon as order of magnitude estimation

We define the mean free path ring integralsRl as

Rl @A#5s22E dŝ dv1 dv2 d3 Q~2ŝ•v12!$I l ~23,12!

1I l ~13,12!1I l ~23,12!1I l ~13,23!%A~12!ur125sŝ .

~53!

Here, the integralsI l are obtained fromI t @see Eq.~29!#
by replacing the step functionQ(t2t** ) by the mean free
path cutoff

Q~ l 2 l 1!Q~ l 2 l 2!Q~ l 2 l 3!, ~54!

for the first method (M1), or by

exp@2~ l 11 l 21 l 3!/l #, ~55!

for the second method (M2).
According to Fig. 1 the distancesl i are given as

l 15v1t** , ~56!

l 25v2t* , ~57!

l 35v2* ~t** 2t* ! ~58!

for I l (23,12) and by

l 15v1t** , ~59!

l 25v2t* , ~60!

l 35v3* ~t** 2t* ! ~61!

for I l (23,13).
The time t has been eliminated from the ring integra

However, it should be remembered that our expressions
ply at the short time scale only@see the comment following
Eq. ~16!#. The mean free path integrals take into account
finite density of the system. They will yield finite values fo
p2 and G, that can be compared with the results of M
simulations.

For a given mean free path cutoff,Rl @A# can be evalu-
ated numerically using Monte Carlo integrations as follow
Three-particle configurations are sampled sorting the vel
ties from the the Maxwellian distribution~13!, the normal
vectorŝ is uniformly distributed over the unit circle, and th
position of the third particle is placed at random. Given
configuration, it is checked if the ring event takes place„con-
ditions represented by step functions in Eq.~30! for
I @(23),(12)# or in Eq.~32! for the I @(23),(13)#…. If the con-
03130
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ditions are met, the integrand is evaluated and added u
typical series of 109 generated configurations is enough
obtain the integrals with a precision of 1%. More efficie
algorithms can be designed to speed up the calculation,
the algorithm described above is fast enough for our p
poses.

The analysis presented in Sec. II and in this section can
directly extended to three dimensions. Similar expressi
for f 2 in the the precollisional region and for the ring int
grals are obtained. However, there is a qualitative differe
in the numerical computation of ring integrals. In three d
mensions, these integrals are convergent for large distan
contrary to the two-dimensional case. In Fig. 2 we pres
the numerical evaluation ofRl @1# as a function of the mean
free path, using both cutoffs methods in two and three
mensions. It is seen that in 2D there is a logarithmic div
gence withl but in 3D both methods converge to the sam
value. Similar results are obtained for the ring integrals
sociated top2 andG.

IV. COMPARISON WITH MOLECULAR DYNAMICS
SIMULATIONS

When a granular fluid composed of IHS particles is let
evolve freely, it cools down homogeneously. This nonstea
state can be transformed into a nonequilibrium steady s
~NESS! by means of a thermostating mechanism@9,5#. After
each dissipative collision, the lost energy is reinjected i
the system by multiplying all the velocities by the sam
value, so as to keep kinetic energy constant. Due to the
of an intrinsic energy~or time! scale in the IHS model, the
multiplication of all velocities by a factor does not modif
the collision sequence in the system.

In Ref. @5# molecular dynamics simulations of the NES
were done for low dissipation and moderate density. In th

FIG. 2. Numerical evaluation ofR@1# as a function of the mean
free path used in the cutoff~in a logarithmic scale!. Data is pre-
sented for two and three dimensions using the first cutoff met
(M1) and the second cutoff method (M2).
6-7
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simulationsp2 andG were computed showing the existen
of velocity correlations. In what follows, units are chosen
that the particle massesm, diameterss, and also the tem-
peratureT of the NESS are set to one.

In Ref. @5# the simulations were done at three differe
densities:n50.05,n50.1, andn50.2, with mean free path
l 56.64, l 53.10, andl 51.35. The last value correspond
to a dense system where we do not expect to find good
merical accord with the theoretical predictions. For each d
sity, simulations at different inelasticities were done and
results forp2 andG were fitted by linear dependence ofq. In
Table I we present the comparison of the simulation res
with theoretical predictions.

At this point, it is instructive to analyze the compariso
between theory and simulations. Quite generally, the num
cal comparison comes out quite well in view of the pheno
enological way in which the mean free path cutoff is intr
duced. The agreement gets worse at higher density wher
mean free path is smaller. This discrepancy is not surpris
because our approach is based on a density expansion~with
large mean free paths!, whereas forn50.2 the mean free
path is of the order of the disk diameter.

Both the simulations and theory agree on the linear
pendence on inelasticities and predict the same sign of
correlations. The positive sign ofG means that the precolli
sional velocities of the particles are more parallel than in
elastic case. This tendency to align the velocities is a con
quence of the inelastic collision law~1!. After a collision
with a third particle, the first pair in the ring sequence arriv
to their next collision with aligned velocities. This effect
what is taken into account in the derivation presented in S
II.

The interpretation of the velocity correlations as reflect
the fact that particles arrive to collisions with aligned velo
ties is consistent with the results obtained forp2. The con-
tribution to the pressure from the correlations is negati
reducing the value corresponding to the elastic case: as
velocities before collision are more parallel, the transfer
momentum is smaller.

In the NESS, the one-particle velocity distribution fun
tion is not Maxwellian but a distorted one. In the Boltzma
and low dissipation limit the velocity distribution functio
can be computed@10#, obtaining

TABLE I. Comparison of the values ofp2 andG computed in
MD simulations and the theoretical predictions. Both cutoff me
ods are used. Results are presented at three different densities

Simulation M1 M2

n50.05
G 0.097q 0.080q 0.045q
p2 120.16q 120.19q 120.11q
n50.1
G 0.27q 0.09q 0.05q
p2 120.25q 120.25q 120.14q
n50.2
G 0.44q 0.09q 0.05q
p2 120.65q 120.28q 120.15q
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w~v !5wT~v !@11qf~v !#, ~62!

wherewT is the Maxwellian distribution,

f~v !52
m2v4

8T2
1

mv2

T
21, ~63!

andT is the~constant! granular temperature in the NESS. A
higher densities, corrections of ordern andnq are expected.

Using the same kind of arguments as in Sec. II, it can
deduced that the dissipative dynamics will give rise to vel
ity correlations. In this case the initial distribution function
not the thermal equilibrium one@Eq. ~12!# but rather

f 3~123,0!5Q~r 122s!Q~r 132s!Q~r 232s!wT~v1!

3wT~v2!wT~v3!

3@11q„f~v1!1f~v2!1f~v3!…#

5 f eq~123!@11q„f~v1!1f~v2!1f~v3!…#,

~64!

where we have kept the first order in density and dissipat
Using the initial condition~64!, instead of the equilibrium

one, in the analysis done in Sec. II we obtain that the follo
ing term that must be added to Eq.~26!:

qnE d3 f eq~123!e2tL(123)@f~v1!1f~v2!1f~v3!#

5qnE d3 f eq~123!@f„v1~0!…1f„v2~0!…1f„v3~0!…#,

~65!

where we have kept only the term linear inq. The initial
velocitiesvi(0) are obtained by the elastic dynamics of thr
isolated particles.

Equation~65! produces velocity correlations in the pre
collisional region if at least one of the initial velocitiesv i(0)
is a function of bothv1 andv2, the velocities of particles 1
and 2 at timet. The previous condition can be met only
particles 1 and 2 have collided betweent50 andt5t. As
we are interested in evaluatingf 2 in the precollisional region
~that is, particles 1 and 2 are about to collide!, Eq. ~65!
contributes to correlations at the ring events described
Sec. II. Then, the initial velocitiesv i(0) are replaced by the
incoming velocitiesv1** , v2** , andv3** ~see Fig. 1!. Again,
we have neglected the events involving sequences of
collisions.

Then, coming from this term there are new termsJt ,
similar to I t , to be evaluated,

-

6-8
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Jt~23,12!5 f eq~123!Q~r23•v23!Q~s22ur23u21~r23•v23!
2!

3Q@~v12v2* !•~r122v12t* !#

3QS s22@r122v12t* #21
1

uv12v2* u2

3@~v12v2* !•~r122v12t* !#2D Q~t** 2t* !

3Q~ t2t** !@f~v1** !1f~v2** !1f~v3** !#,

~66!

where the different symbols are defined in Eq.~31! and

v1** 5v12@~v12v2* !•ŝ2#ŝ2 , ~67!

v2** 5v21@~v12v2* !•ŝ2#ŝ2 , ~68!

v3** 5v31~v23•ŝ1!ŝ1 . ~69!

And also

Jt~23,13!5 f eq~123!Q@r23•v23#Q~s22ur23u21~r23•v23!
2!

3Q@~v12v3* !•~r132v13t* !#

3QS s22@r132v13t* #21
1

uv12v3* u2

3@~v12v3* !•~r132v13t* !#2D Q~t** 2t* !

3Q~ t2t** !@f~v1** !1f~v2** !1f~v3** !#,

~70!

where the different symbols are defined in Eq.~33! and

v1** 5v12@~v12v3* !•ŝ2#ŝ2 , ~71!

v2** 5v22~v23•ŝ1!ŝ1 , ~72!

v3** 5v31@~v12v3* !•ŝ2#ŝ2 . ~73!

Collecting all terms,f 2
c can be written as

1

n2
Q~2ŝ•v12! f 2

c~12;t !ur125sŝ

5qnQ~2ŝ•v12!E d3$I t~23,12!1I t~13,12!

1I t~23,13!1I t~13,23!1Jt~23,12!1Jt~13,12!

1Jt~23,13!1Jt~13,23!%ur125sŝ . ~74!

The new terms in Eq.~74! represent the precollisiona
velocity correlations that are created by the elastic evolu
03130
n

of the nonequilibrium velocity distribution~62!. This kind of
velocity correlations have been largely studied in nonequ
brum states of elastic systems, where the velocity distri
tions get distorted.

To compute collisional integrals, the ring integral opera
must be redefined as

Rt@A#5s22E dŝ dv1 dv2 d3 Q~2ŝ•v12!$I t~23,12!

1I t~13,12!1I t~23,12!1I t~13,23!1Jt~23,12!

1Jt~13,12!1Jt~23,12!1Jt~13,23!%A~12!ur125sŝ .

~75!

Mean free path cutoffs can be introduced in the same w
as before. Numerical evaluation ofG andp2 using these ring
integrals are presented in Table II. The densities are the s
as in Table I. It is obtained that the distortion of the Ma
wellian distribution in the NESS produces a very small co
tribution to velocity correlations. The most important part
the correlation is created by dynamical process describe
Sec. II.

V. CONCLUSIONS

We have shown that, in the inelastic hard sphere mo
for granular fluids, correlated sequences of collisions g
rise to precollisional velocity correlations. Inelastic collisio
produce postcollisional velocity correlations even if syste
is initially at equilibrium. The generated correlations a
propagated dynamically to the next collision. As a resu
particles arrive to collision with their velocities more parall
than in elastic systems. We considered the lowest order c
tribution in density and inelasticity to the precollisional co
relations. At this order, the correlations are produced by
so-called ring events.

In elastic systems, a small number of collisions is enou
to produce local thermodynamic equilibrium, where partic
have uncorrelated velocities. In the IHS model, on the c
trary, a small number of collisions~two in the ring events we
considered! gives rise to precollisional velocity correlation
That is, in elastic systems collisions tend to reduce veloc

TABLE II. Evaluation ofG andp2 using the ring integrals tha
include the distortion to the Maxwellian distribution. Results a
presented for the same densities of Table I.

M1 M2

n50.05
G 0.085q 0.047q
p2 120.19q 120.11q
n50.1
G 0.10q 0.05q
p2 120.25q 120.14q
n50.2
G 0.09q 0.05q
p2 120.28q 120.15q
6-9
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correlations but, in inelastic systems, collisions create th
Therefore, velocity correlations are always present

granular fluids. Not like in elastic fluids, where in equilib
rium velocity correlations vanish. The unavoidable prese
of velocity correlations in granular fluids puts into questi
the validity for these systems of the Boltzmann’s or Ensko
kinetic theories, that neglect precollisional velocity corre
tions. New kinetic approaches must be developed that
into account the creation and propagation of velocity cor
lations in such systems.

Introducing phenomenological mean free path cutoffs,
effect of the velocity correlations inG ~that vanishes in the
absence of correlation! and the pressure is computed nume
cally. The numerical predictions are compared with mole
lar dynamics simulations results, obtaining good qualitat
agreements. Both, simulations and our computations, a
that pressure must decrease due to the velocity alignmen
give the correct sign ofG, with the same order of magnitude
It would be interesting to investigate better ways to introdu
the mean free path cutoff without doing a density expans
that lead to better numerical predictions.
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In a stationary state of granular systems, there is ano
source of precollisional velocity correlation. Correlations a
produced by the distortion of the velocity distribution fun
tion in the nonequilibrium steady state. However, numeri
calculations of this contribution to the correlations give
very small value.

Even though the calculations were done for the IH
model, it is expected that the mechanism studied here for
creation of velocity correlations is generic to granular s
tems.

It would be instructive to perform a similar analysis fo
time correlation functions that lead to expressions for tra
port coefficients in granular fluids@11#.
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